A HoloArticle

Here is an update on my quest to stay on top of all things “holo:” HoloLamp and RealView “Live Holography.” While the two have really nothing to do with each other, both claim the “holo” label with varying degrees of legitimacy, and happened to pop up recently.

HoloLamp

At its core, HoloLamp is a projection mapping system somewhat similar to the AR Sandbox, i.e., a combination of a set of cameras scanning a projection surface and a viewer’s face, and a projector drawing a perspective-correct image, from the viewer’s point of view, onto said projection surface. The point of HoloLamp is to project images of virtual 3D objects onto arbitrary surfaces, to achieve effects like the Millenium Falcon’s holographic chess board in Star Wars: A New Hope. Let’s see how it works, and how it falls short of this goal.

Creating convincing virtual three-dimensional objects via projection is a core technology of virtual reality, specifically the technology that is driving CAVEs and other screen-based VR displays. To create this illusion, a display system needs to know two things: the exact position of the projection surface in 3D space, and the position of the viewer’s eyes in the same 3D space. Together, these two provide just the information needed to set up the correct perspective projection. In CAVEs et al., the position of the screen(s) is fixed and precisely measured during installation, and the viewer’s eye positions are provided via real-time head tracking.

As one goal of HoloLamp is portability, it cannot rely on pre-installation and manual calibration. Instead, HoloLamp scans and creates a 3D model of the projection surface when turned on (or asked to do so, I guess). It does this by projecting a sequence of patterns, and observing the perspective distortion of those patterns with a camera looking in the projection direction. This is a solid and well-known technology called structured-light 3D scanning, and can be seen in action at the beginning of this HoloLamp video clip. To extract eye positions, HoloLamp uses an additional set of cameras looking upwards to identify and track the viewer’s face, probably using off-the-shelf face tracking algorithms such as the Viola-Jones filter. Based on that, the software can project 3D objects using one or more projection matrices, depending on whether the projection surface is planar or not. The result looks very convincing when shot through a regular video camera:

Continue reading

Lasers Are Not Magic

“Can I make a full-field-of-view AR or VR display by directly shining lasers into my eyes?”

No.

Well, technically, you can, but not in the way you probably imagine if you asked that question. What you can’t do is mount some tiny laser emitter somewhere out of view, have it shine a laser directly into your pupil, and expect to get a virtual image covering your entire field of view (see Figure 1). Light, and your eyes, don’t work that way.

Figure 1: A magical retinal display using a tiny laser emitter somewhere off to the side of each eye. This doesn't work in reality.

Figure 1: A magical retinal display using a tiny laser emitter somewhere off to the side of each eye. This doesn’t work in reality. If a single beam of light entering the eye could be split up to illuminate large parts of the retina, real-world vision would not work.

Continue reading

HoloLens and Holograms

Today Microsoft announced a release window (first quarter 2016) and price (USD 3,000) for HoloLens developer kits, so suddenly HoloLens, and discussion thereof, is all over the Internet again.

Figure 1: Microsoft’s HoloLens.

I’ve already talked about HoloLens ad nauseam, but I found myself several times today trying to explain where (I think) the “Holo” in HoloLens comes from, and what HoloLens has to do with actual, real, honest-to-goodness holograms. Continue reading

On the road for VR: Microsoft HoloLens at Build 2015, San Francisco

I have briefly mentioned HoloLens, Microsoft’s upcoming see-through Augmented Reality headset, in a previous post, but today I got the chance to try it for myself at Microsoft’s “Build 2015” developers’ conference. Before we get into the nitty-gritty, a disclosure: Microsoft invited me to attend Build 2015, meaning they waived my registration fee, and they gave me, like all other attendees, a free HP Spectre x360 notebook (from which I’m typing right now because my vintage 2008 MacBook Pro finally kicked the bucket). On the downside, I had to take Amtrak and Bart to downtown San Francisco twice, because I wasn’t able to get a one-on-one demo slot on the first day, and got today’s 10am slot after some finagling and calling in of favors. I guess that makes us even. 😛

So, on to the big question: is HoloLens real? Given Microsoft’s track record with product announcements (see 2009’s Project Natal trailer and especially the infamous Milo “demo”), there was some well-deserved skepticism regarding the HoloLens teaser released in January, and even the on-stage demo that was part of the Build 2015 keynote:

The short answer is: yes, it’s real, but… Continue reading

What is holographic, and what isn’t?

Microsoft just announced HoloLens, which “brings high-definition holograms to life in your world.” A little while ago, Google invested heavily in Magic Leap, who, in their own words, “bring magic back into the world.” A bit longer ago, CastAR promised “a magical experience of a 3D, holographic world.” Earlier than that, zSpace started selling displays they used to call “virtual holographic 3D.” Then there is the current trailblazer in mainstream virtual reality, the Oculus Rift, and other, older, VR systems such as CAVEs.

Figure 1: A real person next to two “holograms,” in a CAVE holographic display.

While these things are quite different from a technical point of view, from a user’s point of view, they have a large number of things in common. Wouldn’t it be nice to have a short, handy term that covers them all, has a well-matching connotation in the minds of the “person on the street,” and distinguishes these things from other things that might be similar technically, but have a very different user experience?

How about the term “holographic?” Continue reading

Messing around with 3D video

We had a couple of visitors from Intel this morning, who wanted to see how we use the CAVE to visualize and analyze Big Datatm. But I also wanted to show them some aspects of our 3D video / remote collaboration / tele-presence work, and since I had just recently implemented a new multi-camera calibration procedure for depth cameras (more on that in a future post), and the alignment between the three Kinects in the IDAV VR lab’s capture space is now better than it has ever been (including my previous 3D Video Capture With Three Kinects video), I figured I’d try something I hadn”t done before, namely remotely interacting with myself (see Figure 1).

Figure 1: How to properly pat yourself on the back using time-delayed 3D video.

Continue reading

Here we go again with Apple’s holography patent

I just found an article about my 3D Video Capture with Three Kinects video on Discovery News (which is great!), but then I found Figure 1 in the “Related Gallery.” Oh, and they also had a link to another article titled “Virtual Reality Sex Game Set To Stimulate” right in the middle of my article, but you learn to take that kind of thing in stride.

Figure 1: Image in the “related gallery” on Discovery News. Original caption: “Apple has filed a patent for a holographic phone, a concept that sounds absolutely cool. We can’t wait. But what would it look like? A video created by animator Mike Ko, who has made animations for Google, Nike, Toyota, and NASCAR, gives us an idea. Check it out here”

Nope. Nope nope nope no. Where do I start? No, Apple has not filed a patent for a holographic phone. And even if Apple had, this is not what it would look like. I don’t want to rag on Mike Ko, the animator who created the concept video (watch it here, it’s beautiful). It’s just that this is not how holograms work. See Figure 2 for a very crude Photoshop (well, Gimp) job on what this would look like if such holographic screens really existed, and Figure 4 for an even cruder job of what the thing Apple actually patented would look like, if they were audacious enough to put it into an iPhone. Continue reading

3D Video Capture with Three Kinects

I just moved all my Kinects back to my lab after my foray into experimental mixed-reality theater a week ago, and just rebuilt my 3D video capture space / tele-presence site consisting of an Oculus Rift head-mounted display and three Kinects. Now that I have a new extrinsic calibration procedure to align multiple Kinects to each other (more on that soon), and managed to finally get a really nice alignment, I figured it was time to record a short video showing what multi-camera 3D video looks like using current-generation technology (no, I don’t have any Kinects Mark II yet). See Figure 1 for a still from the video, and the whole thing after the jump.

Figure 1: A still frame from the video, showing the user’s real-time “holographic” avatar from the outside, providing a literal kind of out-of-body experience to the user.

Continue reading

Apple Patents Holographic Projector (no, not quite)

About once a day I check out this blog’s access statistics, and specifically the search terms that brought viewers to it (that’s how I found out that I’m the authority on the Oculus Rift being garbage). It’s often surprising, and often leads to new (new to me, at least) discoveries. Following one such search term, today I learned that Apple was awarded a patent for interactive holographic display technology. Well, OK, strike that. Today I learned that, apparently, reading an article is not a necessary condition for reblogging it — Apple wasn’t awarded a patent, but a patent application that Apple filed 18 months ago was published recently, according to standard procedure.

But that aside, what’s in the patent? The main figure in the application (see Figure 1) should already clue you in, if you read my pair of posts about the thankfully failed Holovision Kickstarter project. It’s a volumetric display of some unspecified sort (maybe a non-linear crystal? Or, if that fails, a rotating 2D display? Or “other 3D display technology?” Sure, why be specific! It’s only a patent! I suggest adding “holomatter” or “mass effect field” to the list, just to be sure.), placed inside a double parabolic mirror to create a real image of the volumetric display floating in air above the display assembly. Or, in other words, Project Vermeer. Now, I’m not a patent lawyer, but how Apple continues to file patents on the patently trivial (rounded corners, anyone?), or some exact thing that was shown by Microsoft in 2011, about a year before Apple’s patent was filed, is beyond me.

Figure 1: Main image from Apple’s patent application, showing the unspecified 3D image source (24) located inside the double-parabolic mirror, and the real 3D image of same (32) floating above the mirror. There is also some unspecified optical sensor (16) that may or may not let the user interact with the real 3D image in some unspecified way.

Continue reading

Elon Musk discovers AR/VR

Serial entrepreneur Elon Musk posted this double whammy of cryptic messages to his Twitter account on August 23rd:

@elonmusk: We figured out how to design rocket parts just w hand movements through the air (seriously). Now need a high frame rate holograph generator.

@elonmusk: Will post video next week of designing a rocket part with hand gestures & then immediately printing it in titanium

As there are no further details, and the video is now slightly delayed (per Twitter as of September 2nd: @elonmusk: Video was done last week, but needs more work. Aiming to publish link in 3 to 4 days.), it’s time to speculate! I was hoping to have seen the video by now, but oh well. Deadline is deadline.

First of all: what’s he talking about? My best guess is a free-hand, direct-manipulation, 6-DOF user interface for a 3D computer-aided design (CAD) program. In other words, something roughly like this (just take away the hand-held devices and substitute NURBS surfaces and rocket parts for atoms and molecules, but leave the interaction method and everything else the same):

Continue reading