KeckCAVES On Mars, pt. Oh-I-lost-count

Last weekend, we had yet another professional film crew visiting us to shoot video about our involvement in NASA’s still on-going Mars Science Laboratory (MSL, aka Curiosity rover) mission. This time, they were here to film parts of an upcoming 90-minute special about Mars exploration for the National Geographic TV channel. Like last time, the “star” of the show was Dawn Sumner, faculty in the UC Davis Department of Earth and Planetary Sciences, one of the founding members of KeckCAVES, and member of the MSL science team.

Unlike last time, we did not film in the KeckCAVES facility itself (due to the demise of our CAVE), but in the UC Davis ModLab. ModLab is part of an entirely different unit — UC Davis’s Digital Humanities initiative — but we are working closely with them on VR development, they have a nice VR environment consisting of two HTC Vive headsets and a large 4.2m x 2.4m screen with a ceiling-mounted ultra-short throw projector (see Figure 1), their VR hardware is running our VR software, and they were kind enough to let us use their space.

Figure 1: Preparation for filming in UC Davis’s ModLab, showing its 4.2m x 2.4m front-projected screen and ceiling-mounted ultra-short throw projector, and two Lighthouse base stations.

The fundamental idea here was to use several 3D models, created or reconstructed from real data sent back either by satellites orbiting Mars or by the Curiosity rover itself, as backdrops to let Dawn talk about the goals and results of the MSL mission, and her personal involvement in it. Figure 1 shows a backdrop in the real sense of the word, i.e., a 2D picture (a photo taken by Curiosity’s mast camera) with someone standing in front of it, but that was not the idea here (we didn’t end up using that photo). Instead, Dawn was talking while wearing a VR headset and interacting with the 3D models she was talking about, with a secondary view of the virtual world, from the point of view of the film camera, shown on the big screen behind her. More on that later. Continue reading

New Adventures in Hi-Fi

I’ve been spending all of my time over the last few weeks completely rewriting Vrui‘s collaboration infrastructure (VCI from now on), from scratch. VCI is, in a nutshell, the built-in remote collaboration / tele-presence component of my VR toolkit. Or, in other words, a networked multi-player framework. The old VCI was the technology underlying videos such as this one:

Figure 1: Collaborative exploration of a 3D CAT scan of a microbial community, between a CAVE and a 3D TV with head-tracked glasses and a tracked controller.

Continue reading

Set-up Instructions for Vrui with HTC Vive Head-mounted Display

It’s been more than two years since the last time I posted set-up instructions for Vrui and HTC Vive, and a lot has changed in the meantime. While Vrui-5.0 and its major changes are still not out of the kitchen, the current release of Vrui, Vrui-4.6-005, is stable and works very well with the Vive. The recent demise of our CAVE, and our move towards VR headsets until we figure out how to fix it, have caused a lot of progress in Vrui’s set-up and user experience. The rest of this article contains detailed installation and set-up instructions, starting from where my previous step-by-step guide, “An Illustrated Guide to Connecting an HTC Vive VR Headset to Linux Mint 19 (“Tara”),” left off.

If you did not follow that guide and its prerequisite, “An Illustrated Guide to Installing Linux Mint 19 (“Tara”),” this one assumes that you already have:

  • a “gaming” or “VR ready” PC with a powerful Nvidia GeForce graphics card,
  • a full installation of a 64-bit Ubuntu-based Linux operating system, e.g., Ubuntu or Linux Mint, with the MATE desktop environment,
  • proprietary drivers for the Nvidia graphics card installed and working,
  • head-mounted display filtering disabled in the graphics card driver,
  • and a working installation of SteamVR.

If you use a Linux distribution that is not Ubuntu-based, such as my own favorite, Fedora, or another desktop environment such as Gnome Shell or Cinnamon, you will have to make some adjustments throughout the rest of this guide.

This guide also assumes that you have already set up your Vive virtual reality system, including its tracking base stations, and that your Vive headset is connected to your PC via HDMI and USB (I will publish a detailed illustrated guide on that part soon-ish). Continue reading

A Blast From The Past

Back in the olden days, in the summer of 1996 to be precise, I was a computer science Master’s student at the University of Karlsruhe, Germany, about to take the oral exam in my specialization area, 3D computer graphics, 3D user interfaces, and geometric modeling. For reasons that are no longer entirely clear to me, I decided then that it would be a good idea to prepare for that exam by developing a 3D rendering engine, a 3D game engine, and a game, all from scratch. What resulted from that effort — which didn’t help my performance in that exam at all, by the way — was “Starglider Pro:”

In the mid to late 80s, one of my favorite games on my beloved Atari ST was the original Starglider, developed by Jez San for Rainbird Software. I finally replaced that ST with a series of PCs in 1993, first running DOS, and later OS/2 Warp, and therefore needed something to scratch that Starglider itch. Continue reading

3D Camera Calibration for Mixed-Reality Recording

Mixed-reality recording, i.e., capturing a user inside of and interacting with a virtual 3D environment by embedding their real body into that virtual environment, has finally become the accepted method of demonstrating virtual reality applications through standard 2D video footage (see Figure 1 for a mixed-reality recording made in VR’s stone age). The fundamental method behind this recording technique is to create a virtual camera whose intrinsic parameters (focal length, lens distortion, …) and extrinsic parameters (position and orientation in space) exactly match those of the real camera used to film the user; to capture a virtual video stream from that virtual camera; and then to composite the virtual and real streams into a final video.

Figure 1: Ancient mixed-reality recording from inside a CAVE, captured directly on a standard video camera without any post-processing.

Continue reading

AltspaceVR Shutting Down

AltspaceVR, the popular virtual reality social platform, and the eponymous company behind it, will be closing their respective doors on August 3rd. This is surprising, as AltspaceVR has been around since 2013, was well-funded, had a good amount of users given VR’s still-niche status, and had apparently more funding lined up to continue operation and development of their platform (that funding falling through was, according to the announcement linked above, the primary reason for the impending shut-down).

But besides the direct impact on commercial VR as a whole, and the bad omen of a major player closing down, this is also personal to me. Not as a user of AltspaceVR’s service — I have to admit I’ve only tried it for minutes at a time at trade shows or conferences — but as someone who was, albeit tangentially, involved with the company and the people working there.

After having given a presentation at an early SVVR meet-up, I invited SVVR’s founder, Karl Krantz, to visit me at my VR lab at UC Davis. He made the trip a short while later, and brought a few friends, including “Cymatic” Bruce Wooden, Eric Romo, and Gavan Wilhite. I showed them our array of VR hardware, the general VR work we were doing, and specifically our work in VR tele-presence and remote collaboration. According to the people involved, AltspaceVR was founded during the drive back to the Bay Area.

In addition, I co-advised one of AltspaceVR’s developers when he was a PhD student at UC Davis, and I visited them in the summer of 2015 to give a talk about input device and interaction abstraction in multi-platform VR development. During that visit, Eric Romo also gave me my first taste of the newly-released HTC Vive Development Kit (Vive DK1).

For all that, I am sad to see them go under, and I wish everybody who is currently working there all the best for their future endeavors.

Possibly related to this, another piece of news surfaced today: AltspaceVR was named defendant in a patent infringement lawsuit filed by Virtual Immersion Technologies, LLC, regarding this 2002 patent. I do not know whether this filing was a cause in AltspaceVR’s closing, but it is possible that the prospect of a costly court case, or stiff licensing fees, led to some investors getting cold feet.

Either way, this patent deserves closer scrutiny as it is quite broad, and has recently changed ownership from the original inventors to the plaintiff, who has so far been using it exclusively to sue VR companies for infringement. The fact that it specifically claims the use of video to represent performers or users in a shared virtual space might mean that it covers platforms such as our tele-collaboration framework, which would be unfortunate. I have a hunch that this patent, due to its arguably broad applicability, will be the subject of a major legal battle in the near future, and while there is a lot of prior art in multiplayer/multi-user VR, that video component means I cannot dismiss the patent out of hand.

VR medical visualization with 3D Visualizer

Now that Vrui is working on the HTC Vive (at least until the next SteamVR update breaks ABI again), I can finally go back and give Vrui-based applications some tender loving care. First up is 3D Visualizer, an application to visualize and, more importantly, visually analyze three-dimensional volumetric data sets (see Figure 1).

Figure 1: Analyzing a CAT scan with 3D Visualizer on the HTC Vive. Cat included.

Continue reading

Vrui on Oculus Rift DK2

I know, the Oculus Rift DK2 is obsolete equipment, but nonetheless — there are a lot of them still out there, it’s still a decent VR headset for seated applications, I guess they’re getting cheaper on eBay now, and I put in all the work back then to support it in Vrui, so I might as well describe how to use it. If nothing else, the DK2 is a good way to watch DVD movies, or panoramic mono- or stereoscopic videos, in VR.

Figure 1: Using an Oculus Rift DK2 headset with a pair of Vive controllers -- because why not?

Figure 1: Using an Oculus Rift DK2 headset with a pair of Vive controllers — because why not?

Continue reading

Vive la Vrui!

It has been way too long that I have publicly released a new version of the Vrui VR toolkit. The main issue was that I had been chasing evolving hardware, from the Oculus Rift DK1 to the Oculus Rift DK2, and now to HTC’s Vive. During that long stretch of time, I was never happy with the state of support of any of these devices.

That’s finally changed. I have been working on full native support for HTC’s Vive head-mounted display over the last few months (with the first major break-through in May), and I think it’s working really well. There are still a lot of improvements to make and sharp edges to sand off, but I feel it is worthwhile releasing the software as it is now to get some early testing done. So without much further ado, here is Vrui-4.2-004.

Figure 1: Vrui’s ClusterJello toy application running on an HTC Vive head-mounted display. Recorded using a second-generation Microsoft Kinect camera (Kinect-for-Xbox-One).
Continue reading

Keeping VR users from hurting themselves

Just the other day, I jumped on the wayback machine and posted an article about our work in immersive tele-collaboration, featuring research (and a video) from about four years ago. The shame! I figured it would be excusable that one time, and I would never do it again. Oh well, here we go.

Keeping VR users from hurting themselves

… or their expensive VR equipment.

It’s a pretty big deal. Virtual Reality, especially its head-mounted implementation, is quite good at overriding its users’ sense of place and space. “Presence,” or the feeling of bodily being in a place where one knows to be not, is a powerful and compelling experience, but it has a downside: users experiencing it lose touch with their real physical environments. Exhibit A: Figure 1 (granted, there are some concerns that the following video clip was staged, but let’s pretend it’s for reals).

Figure 1: When instinct takes over. Source: imgur

To prevent this kind of thing from happening — at least in most cases — Valve implemented a system called “Chaperone” into the SteamVR run-time framework that runs their and HTC’s Vive VR headset (and potentially other headsets, through Valve’s OpenVR layer). Continue reading