About okreylos

I am a research computer scientist at the University of California, Davis. My research areas are scientific visualization, particularly in immersive ("virtual reality") environments, human/computer interaction in immersive environments, and 3D computer graphics. My primary work is software development, from architecture over design to implementation and coding. I am the primary software developer for the UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES). Some of my released packages are Vrui (a VR development toolkit), CollaborationInfrastructure (a tele-collaboration plug-in for Vrui), Kinect (a driver suite to capture 3D video from Microsoft Kinect cameras), LiDAR Viewer (a visualization package for very large 3D point clouds), 3D Visualizer (a system for interactive visual analysis of 3D volumetric data), Nanotech Construction Kit (an interactive molecular design program), and SARndbox (an augmented reality sandbox). I also dabble in VR hardware, in the sense that I take existing custom or commodity hardware components (3D TVs, head-mounted displays, projectors, tracking systems, Wiimotes, Kinect cameras, ...) and build fully integrated immersive environments out of them. This includes a fair share of driver development to support hardware that either doesn't have drivers, or whose vendor-supplied drivers are not up to par.

Getting Mail from WordPress on Linux

I’ve mentioned previously that I’m running WordPress on my own web server on top of Linux, and that it took me some digging to get it to play nicely with SELinux. Turns out I don’t learn from old mistakes.

WordPress has this nice feature where it sends notifications about new comments, and comments held for moderation, to the admin account’s email address. Well, that never worked for me. That’s a problem: while it’s easy to regularly check the queue of held comments to approve those that are legit, new comments from readers who previously had a comment approved are not held, and can get lost quite easily. I’ve recently found a bunch that I should have answered months ago, but I never saw them.

And as before, the solution is easy once you know what you’re looking for: it’s SELinux again. In my sendmail log file, I found a bunch of these error messages:

NOQUEUE: SYSERR(apache): /etc/mail/sendmail.cf: line 0:
cannot open: Permission denied

Upon checking that file and finding it had proper permissions (read/write for user, read for group and other), I figured there would be some secret SELinux context that needed to be applied, and wondered why it wasn’t configured right by default. Turns out it’s different. SELinux also maintains a set of global flags, and there is one special flag that allows an HTTP server access to sendmail. Seems rather specific, that.

Anyway, to check whether apache (or any other web server) is allowed to send mail via sendmail, run

$ getsebool httpd_can_sendmail

which will reply either “on” or “off” (mine was “off,” big surprise). Then, to enable mail, run

$ setsebool httpd_can_sendmail 1

and voila. Now I’m getting email about comments, and about new users registering for my blog. Yay. As it turns out, there are a lot of new users registering for my blog. After deleting several thousand bogus ones, I’ve disabled user registration for now. Turns out there wasn’t a single registered user that looked legit. Oh well.

This probably means readers who tried to sign up for email notifications about new posts or comment replies didn’t get any either, but nobody ever complained, so I’m not sure. Anyway, it should work now.

A Follow-up on Eye Tracking

Now this is why I run a blog. In my video and post on the Oculus Rift’s internals, I talked about distortions in 3D perception when the programmed-in camera positions for the left and right stereo views don’t match the current left and right pupil positions, and how a “perfect” HMD would therefore need a built-in eye tracker. That’s still correct, but it turns out that I could have done a much better job approximating proper 3D rendering when there is no eye tracking.

This improvement was pointed out by a commenter on the previous post. TiagoTiago asked if it wouldn’t be better if the virtual camera were located at the centers of the viewer’s eyeballs instead of at the pupils, because then light rays entering the eye straight on would be represented correctly, independently of eye vergence angle. Spoiler alert: he was right. But I was skeptical at first, because, after all, that’s just plain wrong. All light rays entering the eye converge at the pupil, and therefore that’s the only correct position for the virtual camera.

Well, that’s true, but if the current pupil position is unknown due to lack of eye tracking, then the only correct thing turns into just another approximation, and who’s to say which approximation is better. My hunch was that the distortion effects from having the camera in the center of the eyeballs would be worse, but given that projection in an HMD involving a lens is counter-intuitive, I still had to test it. Fortunately, adding an interactive foveating mechanism to my lens simulation application was simple.

Turns out that I was wrong, and that in the presence of a collimating lens, i.e., a lens that is positioned such that the HMD display screen is in the lens’ focal plane, distortion from placing the camera in the center of the eyeball is significantly less pronounced than in my approach. Just don’t ask me to explain it for now — it’s due to the “special properties of the collimated light.” 🙂

A Closer Look at the Oculus Rift

I have to make a confession: I’ve been playing with the Oculus Rift HMD for almost a year now, and have been supporting it in Vrui for a long time as well, but I haven’t really spent much time using it in earnest. I’m keenly aware of the importance of calibrating head-mounted displays, of course, and noticed right away that the scale of virtual objects seen through the Rift was way off for me, but I never got around to doing anything about it. Until now, that is.

Continue reading

Elon Musk discovers AR/VR

Serial entrepreneur Elon Musk posted this double whammy of cryptic messages to his Twitter account on August 23rd:

@elonmusk: We figured out how to design rocket parts just w hand movements through the air (seriously). Now need a high frame rate holograph generator.

@elonmusk: Will post video next week of designing a rocket part with hand gestures & then immediately printing it in titanium

As there are no further details, and the video is now slightly delayed (per Twitter as of September 2nd: @elonmusk: Video was done last week, but needs more work. Aiming to publish link in 3 to 4 days.), it’s time to speculate! I was hoping to have seen the video by now, but oh well. Deadline is deadline.

First of all: what’s he talking about? My best guess is a free-hand, direct-manipulation, 6-DOF user interface for a 3D computer-aided design (CAD) program. In other words, something roughly like this (just take away the hand-held devices and substitute NURBS surfaces and rocket parts for atoms and molecules, but leave the interaction method and everything else the same):

Continue reading

Happy birthday, doc-ok.org!

It’s exactly one year ago that I posted my first article for this here blog. I think that is cause for some reflection and maybe some celebration. Has it been worth the effort? Am I on the way to achieving what I set out to do?

According to my “About This Blog” page, my concrete goals were to

…talk about insights gained or problems encountered while writing software, comment on things others have said, discuss my own opinions on how to do things the “right way” or the “wrong way,” post updates on software development, comment on new VR hardware as I get my hands on it, etc.

Continue reading

Holovision revisioned

Boy, do I hate being wrong. And I was very wrong about the Holovision — A Life Size Hologram Kickstarter project (don’t bother; page down permanently) I talked about in a previous post. Why was I wrong? Because I gave those people way too much credit. I questioned their claims of life-size holograms, I questioned their PR material (because it helped me address a lingering point), but I didn’t question their most basic claim: 3D. I guess I’m too gullible.

Continue reading

The Holovision Kickstarter “scam”

Update: Please tear your eyes away from the blue lady and also read this follow-up post. It turns out things are worse than I thought. Now back to your regularly scheduled entertainment.

I somehow missed this when it was hot a few weeks or so ago, but I just found out about an interesting Kickstarter project: HOLOVISION — A Life Size Hologram. Don’t bother clicking the link, the project page has been taken down following a DMCA complaint and might not ever be up again.

Why do I think it’s worth talking about? Because, while there is an actual design for something called Holovision, and that design is theoretically feasible, and possibly even practical, the public’s impression of the product advertised on Kickstarter is decidedly not. The concept imagery associated with the Kickstarter project presents this feasible technology in a way that (intentionally?) taps into people’s misconceptions about holograms (and I’m talking about the “real” kind of holograms, those involving lasers and mirrors and beam splitters). In other words, it might not be a scam per se, and it might even be unintentional, but it is definitely creating a false impression that might lead to very disappointed backers.

Figure 1: This image is a blatant lie.

Continue reading

Stereo Sue

I was just reminded of an article in The New Yorker that I read a long time ago, in June 2006. The article, written by eminent neurologist Oliver Sacks, describes the experience of an adult woman, Susan R. Barry, a professor of neurobiology herself, who had been stereoblind her entire life, and suddenly regained stereoscopic vision after intensive visual training at the age of 48. While the full original article, titled “Stereo Sue,” is behind the New Yorker’s pay wall, I just found an awesome YouTube video of a joint interview with Drs. Barry and Sacks:

Continue reading

Installing and running first Vrui applications

In my detailed how-to guide on installing and configuring Vrui for Oculus Rift and Razer Hydra, I did not talk about installing any actual applications (because I hadn’t released Vrui-3.0-compatible packages yet). Those are out now, so here we go.

Kinect

If you happen to own a Kinect for Xbox (Kinect for Windows won’t work), you might want to install the Kinect 3D Video package early on. It can capture 3D (holographic, not stereoscopic) video from one or more Kinects, and either play it back as freely-manipulable virtual holograms, or it can, after calibration, produce in-system overlays of the real world (or both). If you already have Vrui up and running, installation is trivial.

Continue reading

Setting up Vrui for Oculus Rift

As promised, here is a detailed guide to get Vrui version 3 running with an Oculus Rift (and optionally a Razer Hydra, since that seems to be the 6-DOF input device du jour).

Step 1: System Preparation

If you are already running Linux, good for you. Skip the next paragraph.

If you don’t have Linux yet, go and grab it. I personally prefer Fedora, but it’s generally agreed[citation needed] that Ubuntu is the easiest to install for new Linux users, so let’s go with that. The Ubuntu installer makes it quite easy to install alongside an existing Windows OS on your system. Don’t bother installing Linux inside a virtual machine, though: that way Vrui won’t get access to your high-powered graphics cards, and performance will be abysmal. It won’t be able to talk to your Rift, either.

One of the first things to do after a fresh Linux install is to install the vendor-supplied drivers for your graphics card (if you don’t have a discrete Nvidia or ATI/AMD graphics card, go buy a GeForce!). Installing binary drivers is much easier these days. Here are instructions for Nvidia and ATI/AMD cards. If you happen to be on Fedora, enable the rpmfusion repositories and get the appropriate driver packages from there.

Continue reading